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- CRITICAL CASIMIR FORCE SCALING FUNCTIONS OF
THE MEAN SPHERICAL MODEL IN 2<d<3 DIMENSIONS
- FOR NONPERIODIC BOUNDARY CONDITIONS

B. KASTENING" and V. DOHM!

Institute for Theoretical Physics, Technische Hochschule Aachen,
Physikzentrum, D-52056 Aachen, Germany
*E-mail: kostening@physik.rwth-aachen.de
TE-mail; vdohm@physik.rwth-aachen.de

Finite-size effects are investigated in the mean spherical model in film geome-
try with nonpertodic boundary conditions above and below bulk T.. We have
obtained exact results for the excess free energy and the Casimir force for an-
tiperiodic, Neumann, Dirichlet, and Neumann-Dirichlet mixed boundary con-
ditions in 2 < d € 3 dimensions. Analytic results are presented in 2 < d < 3
dimensions for Dirichlet boundary conditions and for d = 3 for Neumann-
Dirichlet boundary conditions. We find an unexpected leading size dependence
o< Cxt/L? of the Casimir force, with different amplitudes 'y and C_.. above
and below T, for large L at fixed t = (1" — T¢)/Te # 0 for other than periodic
boundary conditions.

Keywords: Mean spherical model; Exact solution; Free energy; Critical Casimir
force; Finite-stze scaling; Scaling function.

1. Iniroduction

Little is known about finite-size effects of critical systems below the bulk
transition temperature T, for realistic boundary conditions, such as Dirich-
let or Neumann boundary conditions. Even for the exactly solvable mean
spherical model®? no finite-size investigation has been performed so far be-
low T, for nonperiodic boundary conditions. Previous studies of this model
for the case of Dirichlet {or free} boundary conditions for T' > T, have
shown that finite-size scaling is violated in d = 3 dimensions’? whereas
finite-size scaling holds in 2 < d < 3 dimensions.? Here we present exact
results of the free energy and the Casimir force of this model above and
-below bulk T, in film geometry with various nonperiodic boundary condi-
tions in 2 < d < 3 dimensions. The validity of finite-size scaling below three
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+ dimensions is confirmed and the Casimir force finite-size scaling functidns
for nonperiodic boundary conditions in d = 2.5 dimensions are graphically
displayed. As unexpected results we find the validity of finite-size scaling
in d = 3 dimensions for mixed Neumann-Dirichlet boundary conditions"
and a leading size dependence o« Cyt/L? of the Casimir force, with dif. -
ferent amplitudes C. and C_ above and below T, for large L at fixed -
t = (T —T.)/T # 0 for other than periodic boundary conditions. :

2. Model

Consider a d-dimensional simple cubic lattice with lattice spacing a, N =
N%-1 x N sites and volume V = L9 1L, where I, = Na and L = Na. The
Hamiltonian of the mean spherical model on this lattice is

J 7
H=a’ 55 Z{Sm—Smr)2+§ZSi ; (1)

{z,z'}

with J > 0 and where 3, ..y denotes a double sum over both primed an
unprimed coordinates, where only nearest neighbors (lx — 2’| = a) con-
tribute. The fluctuations of the scalar spin variables S, are subject to the
constraint

a2y (SZ) =N, (2)

implying that the “spherical field” 4 is not an independent quantity but is
a function of 8 = 1/{kpT) and of the geometry of the system.

As we are only interested in the film Jimit N ~ co, we only need to
specify the boundary conditions in the dth direction. After adding two
fictitious sites zp and zy..1 in the negative and positive dth direction for
cach value of the remaining d — 1 coordinates (which we omit from the

notation now), the various boundary conditions considered here are defined -
by '

p: periodic, Senir = Sy, (3a)
a: antiperiodic, Sener = =Sz, (3b)
NN : Neumann-Neumann, Swo = 8z1v Sanpr = Sy (3c)
ND : Neumann-Dirichlet, Sz = Sz1s  Suws, =0, {3d)
DD : Dirichlet-Dirichlet, Ss0=0,  Seny=0. = (3¢}

the terminology being in analogy to the corresponding continuum model.
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The dimensionless partition function 7 and thermodynamic potential
& are defined by

~ . +o0 dSw v
201 D) = expl—po(T s LD = TL [ qamays oxo(=A70- (4

The appropriate (Legendre transformed) reduced free-energy density is

. 8 ¢ "R

f(t, L) = f,h—’n;o Fd-ir, [@ H (‘ﬁru‘)T,L,f] ) (5)

with p(¢, L) determined by the constraint (2) for N-ocoFor2<d<3

dimensions there is no phase transition at finite temperature for finite L,
but there is a transition at a finite T¢ in the bulk limit L — oo.

The excess free-energy density is fo*(t, L) = F(t,L) — f(t,00). We are

interested in the thermodynamic Casimir force per unit area®

Ft,L)= d%@. (6)

Tt is expected®? that f°*(t, L) and F(t, L) can be decomposed into singular
and regular parts, f& = Sef;g + frog and F = Fiing 1 Freg: If finite-size

scaling holds, the singular parts have the asymptotic (large L, small [t}
scaling structure®?

ex(t, L) = LTF(s), Fung(t, L) = L72X(3), (7)

with the scaling variable s = t(L/g) ", v =1/(d - 2). The nonuniversal
reference length &y can be chosen as the asymptotic amplitude of the second-
moment bulk correlation length & = &t™ above T¢. In the presence of
surface contributions it is appropriate to further decompose, for [t| # 0,

f;);g(t'l L) = :urf,sing(t).L—l + f:urf,sing(t)L_l + L_dg(s)s (8)

where o and b denote the two surfaces of the film. The scaling function
X (s) is determined by F(s) and G(s) according to

X(s) = (d—1F(s) - (d- 2)sF"(s)
= (d— 1)G(s) ~ (d — 2)sG'(s). 9)

3. Results

As a cross check, we have successfully compared our expressions for the
free energy for periodic boundary conditions with Ref. 5 for d = 3 and with |
Ref, 6 for 2 < d < 3. As an example with nonperiodic boundary conditions,
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we provide here the exact result for X (s) for Dirichlet-Dirichlet boundary-
conditions for 2 < d < 3,

(%2 d— 1)z
—2(%{%@)3 [yi—wz—yﬁo]s—g—z—(g));/%*{yi—yé‘o]

(%) . 72(d - DT(%2) 4y

X(s) =

T Y@@ oY T T sumEr ok
d—1 = 7y (d+1)/2 Y T
_ jal T O | P e _
2d+1ﬂ/; dz(z) e e*|K (z)-1] z«}-l VEzp,
(10)
with yeo(s) defined by
(s g5, o
== o §<0,
and with yy(s) determined by the constraint, which now reads
T4y ? - ) = VAT (34 )E° — 2(4m)“ Ealur), (12)
where
1 IS AN o 7L WRE ) (S \/?
) = gz [ 45(5) e K@y T4
(13)
and K(z2) =300 e~""%_ Similar expressions result for the other bound-

ary conditions of Eq. (3). The d = 2.5 results are displayed in Figs. 1(a)-{e)
for all these boundary conditions.

For d = 3, both the reduced free-energy density and the Casimir force
exhibit scaling violations for Neumann-Neumann and Dirichlet-Dirichlet
boundary conditions, for example in the form of a logarithmic dependence
on Lja at bulk T,, as will be detailed elsewhere. We find, however, that
scaling holds not only for periodic and antiperiodic, but also for mixed
Neumann-Dirichlet boundary conditions in three dimensions. The reason
for this unexpected behavior will be discussed elsewhere. The Casimir force
scaling function for Neumann-Dirichlet boundary conditions reads

1 1 ,_ 1 ._
Xs(s) = —ZE@% i (73 —v2) s — = (7 —v3)
_ ;—ﬂ [Lis(—e~29%) + 29 Lig(—e"2)] (14)

where Lip and Liz are polylogarithms, with

By = j " dyB(y)? [ - By)] ~ ~0287167, (15)
Jo
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Fig. 1. (a)-(e): Scaling function X {s) of the Casimir force for periodic {a), antiperiodic
{(b), Neumann-Neumann, (c), Neumann-Dirichlet (d), and Dirichlet-Dirichlet (e) bound-
ary conditions for d = 2.5. The grey lines specily the asymptotic (s — oo) behavior.
(f): X3(s) for Neumann-Dirichlet boundary conditions for d = 3.

Yoo(s) from (11) and §;,(s) given by the constraint

L=y - %2 = arcosh (3e° ") (16)

for y, > m/2 and appropriate analytic continuations to 0 < yr < w/2.
X3(s) is shown in Fig. 1(f). X3(s) exhibits a linear asymptotic behavior
not only for large negative s [as for d = 2.5, see Fig. 1{d})}, but also for large
positive s.

For other than periodic boundary conditions we find at fixed [t] # 0
for sufficiently large L that the Casimir force has the leading behavior
F ~ Cyt/L* with different amplitudes C'; and C_ above and below Te,
respectively. In Eqs. (10) and (14) we have included these terms in the
singular part Fyy, which then implies the linear asymptotic behavior of the
scaling functions shown in Fig. 1(b)-(f} for large positive and/or negative
8 for the various nonperiodic boundary conditions. We note here, however,
that this unexpected behavior cannot uniquely be attributed to the scaling
functions because of an ambiguity in defining the regular part of the Casimir
force, as will be discussed elsewhere.

Finally, a reservation must be made with regard to the exponential tails
of the L-dependence of the Casimir foree. As pointed out elsewhere,®7 these
tails violate finite-size scaling and universality. They are not contained in
Egs. (10) and (14). :

3
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